Composable Core-sets for Determinant Maximization: A Simple Near-Optimal Algorithm

Piotr Indyk
MIT

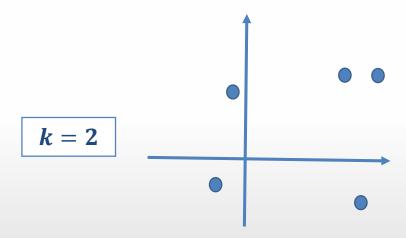
Sepideh Mahabadi TTIC

Shayan Oveis Gharan
U. of Washington

Alireza Rezaei
U. of Washington

Volume (Determinant) Maximization Problem

Input: a set of n vectors $V \in \mathbb{R}^d$ and a parameter $k \leq d$,

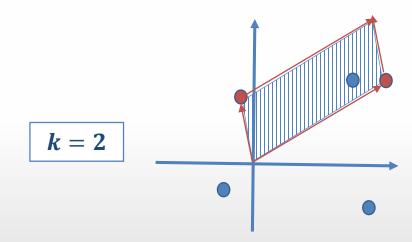


Volume (Determinant) Maximization Problem

Input: a set of n vectors $V \in \mathbb{R}^d$ and a parameter $k \leq d$,

Output: a subset $S \subset V$ of size k with the maximum volume

Parallelepiped spanned by the points in S

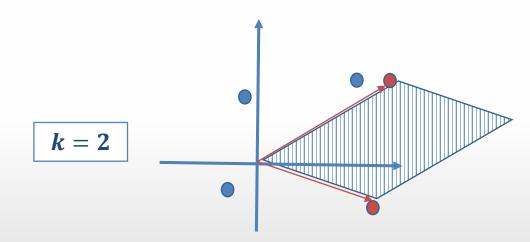


Volume (Determinant) Maximization Problem

Input: a set of n vectors $V \in \mathbb{R}^d$ and a parameter $k \leq d$,

Output: a subset $S \subset V$ of size k with the maximum volume

Parallelepiped spanned by the points in S



Determinant (Volume) Maximization Problem

Input: a set of n vectors $V \in \mathbb{R}^d$ and a parameter $k \leq d$,

Output: a subset $S \subset V$ of size k with the maximum volume

Parallelepiped spanned by the points in S

$$\left(v_1 \, v_2 \dots v_n \, \right)$$

Equivalent Formulation:

Reuse V to denote the matrix where its columns are the vectors in V

Determinant (Volume) Maximization Problem

Input: a set of n vectors $V \in \mathbb{R}^d$ and a parameter $k \leq d$,

Output: a subset $S \subset V$ of size k with the maximum volume

Parallelepiped spanned by the points in S

Equivalent Formulation:

Reuse V to denote the matrix where its columns are the vectors in V

• Let M be the gram matrix V^TV

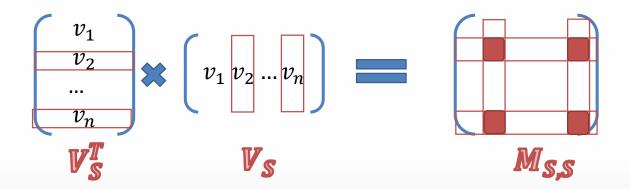
$$M_{i,j} = v_i \cdot v_j$$

Determinant (Volume) Maximization Problem

Input: a set of n vectors $V \in \mathbb{R}^d$ and a parameter $k \leq d$,

Output: a subset $S \subset V$ of size k with the maximum volume

Parallelepiped spanned by the points in S



Equivalent Formulation:

Reuse V to denote the matrix where its columns are the vectors in V

- Let M be the gram matrix V^TV
- Choose S such that $det(M_{S,S})$ is maximized

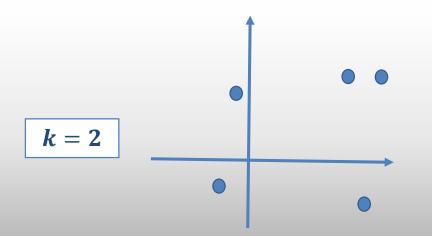
$$M_{i,j} = v_i \cdot v_j$$

 $\det(M_{S,S}) = Vol(S)^2$

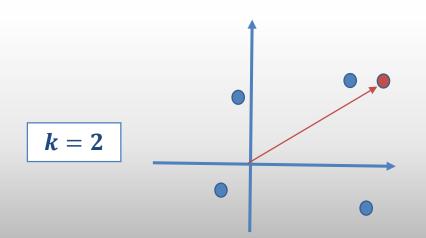
• Hard to approximate within a factor of 2^{ck} [CMI'13]

- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: e^k -approximation [Nik'15]

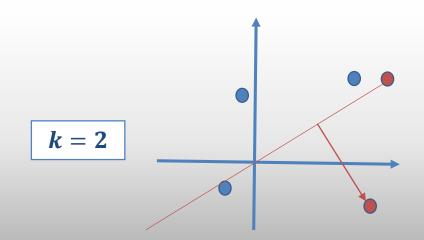
- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: e^k -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For k iterations,
 - lacktriangle Add to U the farthest point from the subspace spanned by U



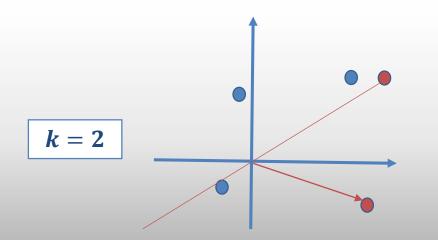
- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: e^k -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For *k* iterations,
 - lacktriangle Add to U the farthest point from the subspace spanned by U



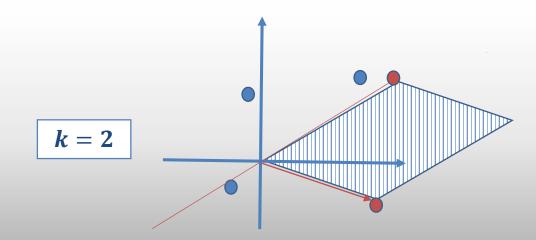
- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: e^k -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For *k* iterations,
 - lacktriangle Add to U the farthest point from the subspace spanned by U



- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: e^k -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For *k* iterations,
 - lacktriangle Add to U the farthest point from the subspace spanned by U

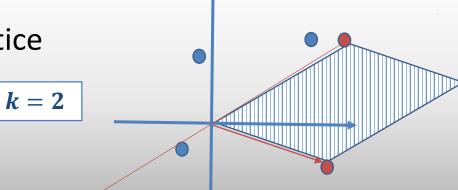


- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: e^k -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For *k* iterations,
 - lacktriangle Add to U the farthest point from the subspace spanned by U



- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: e^k -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For *k* iterations,
 - lacktriangle Add to U the farthest point from the subspace spanned by U

• Greedy performs very well in practice



DPP: Very popular probabilistic model, where given a set of vectors V, samples any k-subset S with probability proportional to this determinant.

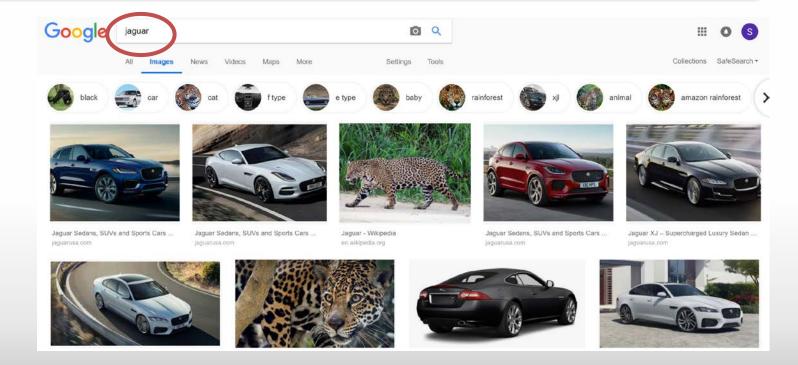
- Maximum a posteriori (MAP) decoding is determinant maximization
- Volume/determinant is a notion of diversity

- NeurIPS'18 Tutorial, Negative Dependence, Stable Polynomials, and All That, Jegelka, Sra
- ICML'19 Workshop, Negative Dependence: Theory and Applications in Machine Learning, Gartrell, Gillenwater, Kulesza, Mariet

Given a set of objects, how to pick a few of them while maximizing diversity?

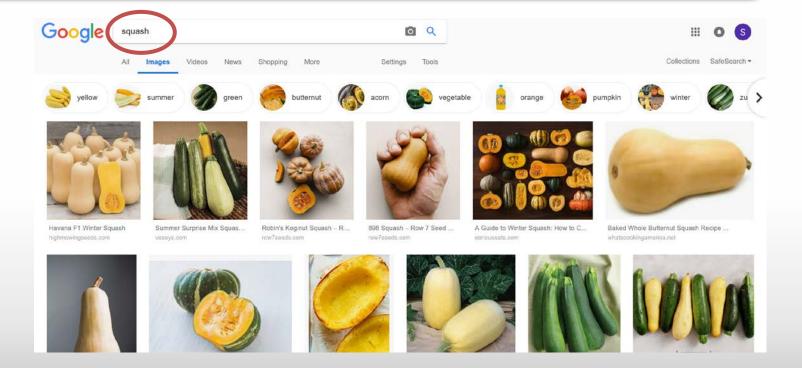
Given a set of objects, how to pick a few of them while maximizing diversity?

Searching

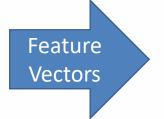


Given a set of objects, how to pick a few of them while maximizing diversity?

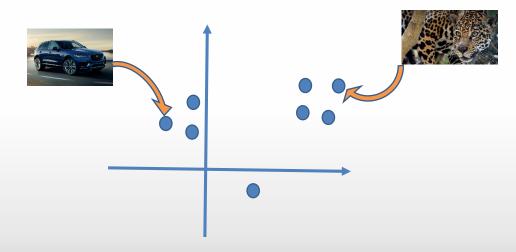
Searching



Objects (documents, images, etc)

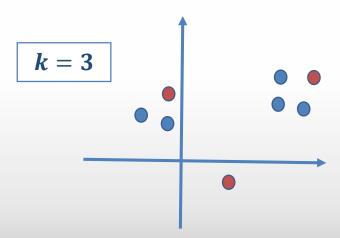


Points in a high dimensional space



Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter k,

Goal: pick k points while maximizing "diversity".



DPP: Very popular probabilistic model, where given a set of vectors V, samples any k-subset S with probability proportional to this determinant.

- Maximum a posteriori (MAP) decoding is determinant maximization
- Volume/determinant is a notion of diversity

Applications

[MJK'17,GCGS'14] Video summarization [KT+'12, CGGS'15,KT'11] Document summarization [YFZ+'16] Tweet generation [LCYO'16] Object detection

DPP: Very popular probabilistic model, where given a set of vectors V, samples any k-subset S with probability proportional to this determinant.

- Maximum a posteriori (MAP) decoding is determinant maximization
- Volume/determinant is a notion of diversity

Applications

[MJK'17,GCGS'14] Video summarization [KT+'12, CGGS'15,KT'11] Document summarization [YFZ+'16] Tweet generation [LCYO'16] Object detection

- Most applications deal with massive data
- Lots of effort for solving the problem in massive data models of computation [MJK'17, WIB'14, PJG+'14, MKSK'13, MKBK'15, MZ'15, MZ'15, BENW'15]
- e.g. streaming, distributed, parallel

DPP: Very popular probabilistic model, where given a set of vectors V, samples any k-subset S with probability proportional to this determinant.

- Maximum a posteriori (MAP) decoding is determinant maximization
- Volume/determinant is a notion of diversity

Applications

[MJK'17,GCGS'14] Video summarization [KT+'12, CGGS'15,KT'11] Document summarization [YFZ+'16] Tweet generation [LCYO'16] Object detection

- Most applications deal with massive data
- Lots of effort for solving the problem in massive data models of computation [MJK'17, WIB'14, PJG+'14, MKSK'13, MKBK'15, MZ'15, MZ'15, BENW'15]
- e.g. streaming, distributed, parallel

Core-sets

Core-sets [AHV'05]: a subset *U* of the data *V* that represents it well

Solving the problem over $m{U}$ gives a good approximation of solving the problem over $m{V}$

Core-sets [AHV'05]: a subset *U* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

Core-sets [AHV'05]: a subset *U* of the data *V* that represents it well

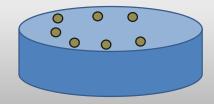
Composable Core-sets [AAIMV'13 and IMMM'14]:

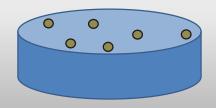
- Let f be an optimization function
 - \circ E.g. f(V): solution to k determinant maximization

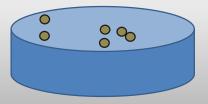
Core-sets [AHV'05]: a subset *U* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

- Let f be an optimization function
 - \circ E.g. f(V): solution to k determinant maximization
- Multiple data sets V_1, \dots, V_m and their coresets $U_1 \subset V_1, \dots, U_m \subset V_m$,
 - o $f(U_1 \cup \cdots \cup U_m)$ approximates $f(V_1 \cup \cdots \cup V_m)$ by a factor α



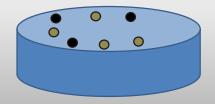


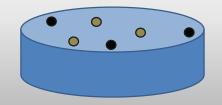


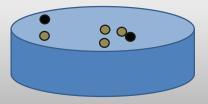
Core-sets [AHV'05]: a subset *U* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

- Let f be an optimization function
 - \circ E.g. f(V): solution to k determinant maximization
- Multiple data sets V_1, \dots, V_m and their coresets $U_1 \subset V_1, \dots, U_m \subset V_m$,
 - o $f(U_1 \cup \cdots \cup U_m)$ approximates $f(V_1 \cup \cdots \cup V_m)$ by a factor α



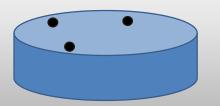


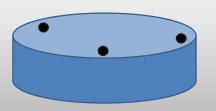


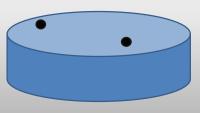
Core-sets [AHV'05]: a subset *U* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

- Let f be an optimization function
 - \circ E.g. f(V): solution to k determinant maximization
- Multiple data sets V_1, \dots, V_m and their coresets $U_1 \subset V_1, \dots, U_m \subset V_m$,
 - o $f(U_1 \cup \cdots \cup U_m)$ approximates $f(V_1 \cup \cdots \cup V_m)$ by a factor α



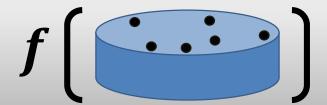




Core-sets [AHV'05]: a subset *U* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

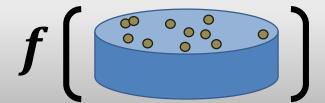
- Let f be an optimization function
 - \circ E.g. f(V): solution to k determinant maximization
- Multiple data sets V_1, \dots, V_m and their coresets $U_1 \subset V_1, \dots, U_m \subset V_m$,
 - o $f(U_1 \cup \cdots \cup U_m)$ approximates $f(V_1 \cup \cdots \cup V_m)$ by a factor α



Core-sets [AHV'05]: a subset *U* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

- Let f be an optimization function
 - \circ E.g. f(V): solution to k determinant maximization
- Multiple data sets V_1, \dots, V_m and their coresets $U_1 \subset V_1, \dots, U_m \subset V_m$,
 - o $f(U_1 \cup \cdots \cup U_m)$ approximates $f(V_1 \cup \cdots \cup V_m)$ by a factor α



Core-sets [AHV'05]: a subset *U* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

- Let f be an optimization function
 - \circ E.g. f(V): solution to k determinant maximization
- Multiple data sets V_1, \dots, V_m and their coresets $U_1 \subset V_1, \dots, U_m \subset V_m$,
 - o $f(U_1 \cup \cdots \cup U_m)$ approximates $f(V_1 \cup \cdots \cup V_m)$ by a factor α
- ✓ Composable Core-sets have been studied for the **diversity Maximization** problems, for other notions of diversity: minimum pairwise distance, sum of pairwise distances, etc.
- ✓ Determinant maximization is a "higher order" notion of diversity

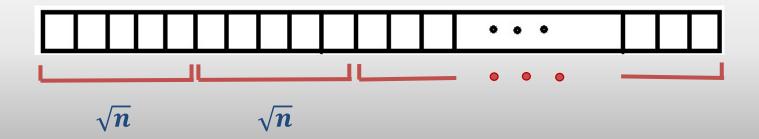
Applications: Streaming Computation

- Streaming Computation:
 - Processing sequence of n data elements "on the fly"
 - limited Storage



Applications: Streaming Computation

- Streaming Computation:
 - Processing sequence of n data elements "on the fly"
 - limited Storage
- Composable Core-set
 - Divide into chunks



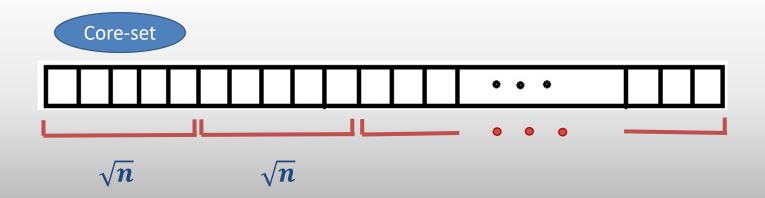
Applications: Streaming Computation

Streaming Computation:

- Processing sequence of n data elements "on the fly"
- limited Storage

Composable Core-set

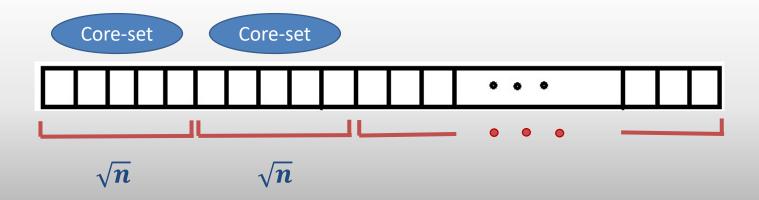
- Divide into chunks
- Compute Core-set for each chunk as it arrives



Applications: Streaming Computation

Streaming Computation:

- Processing sequence of n data elements "on the fly"
- limited Storage
- Composable Core-set
 - Divide into chunks
 - Compute Core-set for each chunk as it arrives



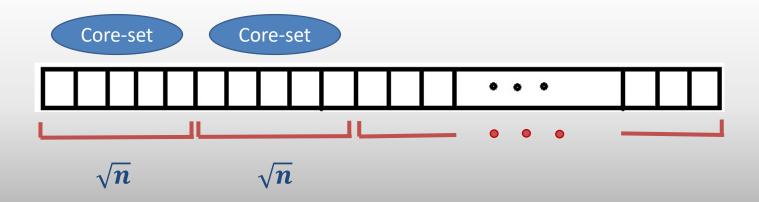
Applications: Streaming Computation

Streaming Computation:

- Processing sequence of n data elements "on the fly"
- limited Storage

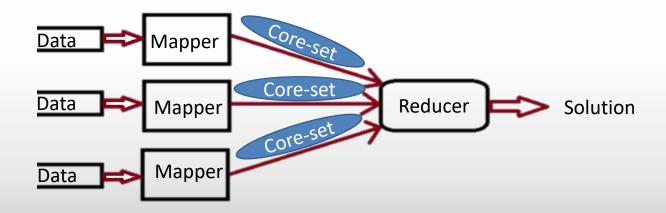
Composable Core-set

- Divide into chunks
- Compute Core-set for each chunk as it arrives
- Space goes down from n to \sqrt{n}



Applications: Distributed Computation

- Streaming Computation
- Distributed System:
 - Each machine holds a block of data.
 - A composable core-set is computed and sent to the server



Applications: Improving Runtime

- Streaming Computation
- Distributed System
- Similar framework for improving the runtime

Can we get a composable core-set of small size for the determinant maximization problem?

Composable Core-sets for Volume Maximization

	[IMOR'18]
Approximation	$\widetilde{O}(k)^{k/2}$
Core-set Size	$\widetilde{\boldsymbol{O}}(\boldsymbol{k})$
Simple?	×

LP-based Optimal Approximation Algorithm of [IMOR'18]:

There exists a polynomial time algorithm for computing an $\widetilde{O}(k)^{k/2}$ -composable core-set of size $\widetilde{O}(k)$ for the volume maximization problem.

Composable Core-sets for Volume Maximization

	Lower Bound	[IMOR'18]
Approximation	$\Omega(k)^{rac{k}{2}-o(k)}$	$\widetilde{\boldsymbol{O}}(\boldsymbol{k})^{\frac{\boldsymbol{k}}{2}}$
Core-set Size	$k^{O(1)}$	$\widetilde{O}(k)$
Simple?		×

Lower bound [IMOR'18]:

Any composable core-set of size $k^{O(1)}$ for the volume maximization problem must

have an approximation factor of $\Omega(k)^{\frac{k}{2}(1-o(1))}$.

Our Results

	Lower Bound	[IMOR'18]	Greedy
Approximation	$\Omega(k)^{rac{k}{2}-o(k)}$	$\widetilde{\boldsymbol{O}}(\boldsymbol{k})^{\frac{\boldsymbol{k}}{2}}$	$O(C^{k^2})$
Core-set Size	$k^{O(1)}$	$\widetilde{\boldsymbol{O}}(\boldsymbol{k})$	\boldsymbol{k}
Simple?		×	✓

The widely used Greedy algorithm produces a composable core-set of size k with

approximation factor $O(C^{k^2})$.

Our Results

	Lower Bound	[IMOR'18]	Greedy	Local Search
Approximation	$\Omega(k)^{rac{k}{2}-o(k)}$	$\widetilde{\boldsymbol{O}}(\boldsymbol{k})^{rac{\boldsymbol{k}}{2}}$	$O(C^{k^2})$	$O(k^k)$
Core-set Size	$k^{O(1)}$	$\widetilde{m{O}}(m{k})$	\boldsymbol{k}	k
Simple?		×	✓	✓

The Local Search Algorithm produces a composable core-set of size k with approximation factor $O(k)^{2k}$.

This Talk

The Local Search Algorithm produces a composable core-set of size k with approximation factor $O(k)^k$ for the volume maximization problem.

This Talk

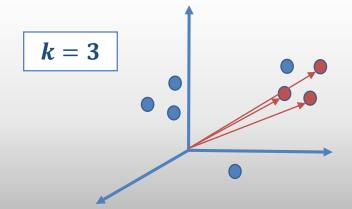
The Local Search Algorithm produces a composable core-set of size k with approximation factor $O(k)^k$ for the volume maximization problem.

In comparison to the optimal core-set algorithm

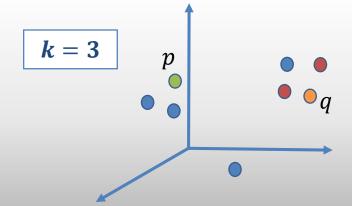
- \triangleright Approximation $O(k)^k$ as opposed to $O(k \log k)^{k/2}$
- ightharpoonup Smaller Size k as opposed to $O(k \log k)$
- Simpler to implement (similar to Greedy)
- **▶** Better performance in practice

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

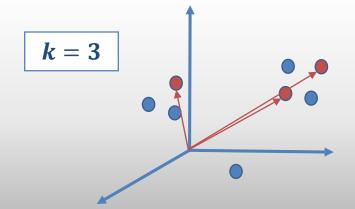
- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$



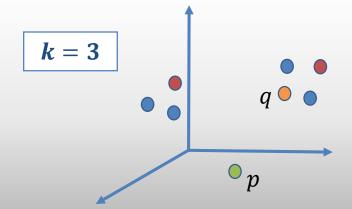
- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$



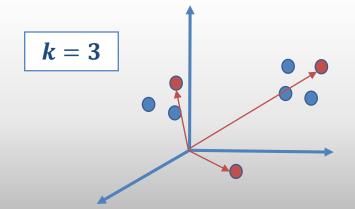
- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$



- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$



- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$



To bound the run time

Start with a crude approximation (Greedy algorithm)

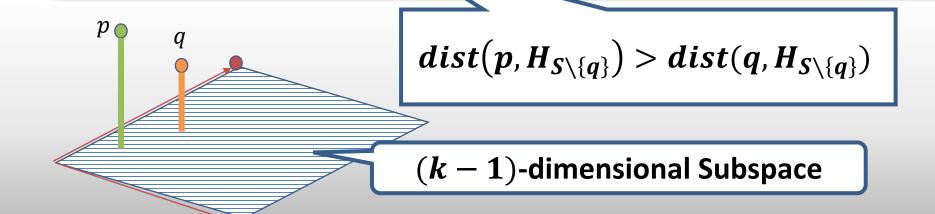
Input: a set V of n points a

- 1. Start with an **arbitrary** subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

If it increases by at least a factor of $(1+\epsilon)$

Checking the condition

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$



Local Search preserves maximum distance to "all" subspaces of dimension k-1

Local Search preserves maximum distance to "all" subspaces of dimension k-1

- > V is the point set
- \triangleright S = LS(V) is the core-set produced by local search

Local Search preserves maximum distance to "all" subspaces of dimension k-1

- > V is the point set
- \triangleright S = LS(V) is the core-set produced by local search

Main Lemma [formal]:

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{q \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Proof.

 $p_{\, \bullet}$

• Let $p \in V$ be a point

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

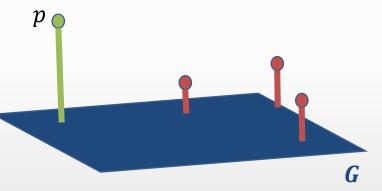
- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.



For any (k-1)-dimensional subspace ${\it G}$, the maximum distance of the point set to ${\it G}$ is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

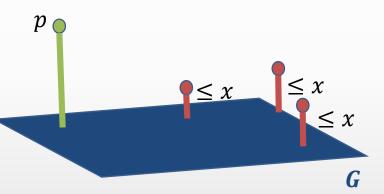
- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q, G) \le x$



For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

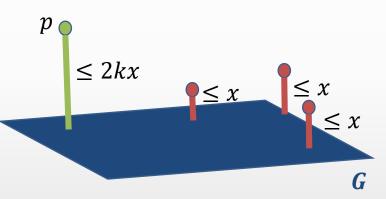
- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q,G) \le x$



For any (k-1)-dimensional subspace ${\it G}$, the maximum distance of the point set to ${\it G}$ is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

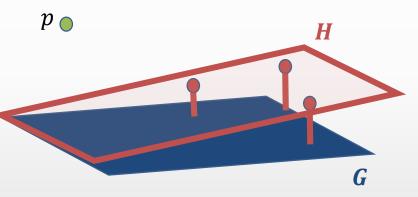
- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q,G) \le x$
- Goal: $d(p,G) \leq 2kx$



For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

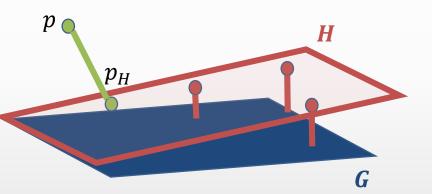
- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q,G) \le x$
- Goal: $d(p,G) \leq 2kx$
- $H := H_S$ be the subspace passing through S



For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q,G) \le x$
- Goal: $d(p,G) \le 2kx$
- $H := H_S$ be the subspace passing through S
- Let p_H be the projection of p onto G

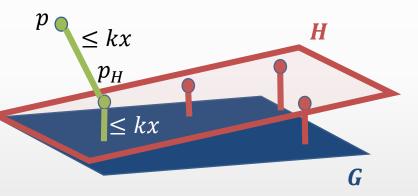


For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Proof.

- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q,G) \le x$
- Goal: $d(p,G) \leq 2kx$
- $H := H_S$ be the subspace passing through S
- Let p_H be the projection of p onto G



Lemma 1: $d(p, p_H) \leq kx$

Lemma 2: $d(p_H, G) \le kx$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

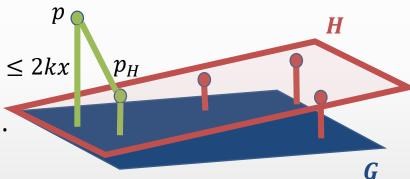
$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Proof.

- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q,G) \le x$
- Goal:

$$d(p,G) \leq 2kx$$

- $H := H_S$ be the subspace passing through S
- Let p_H be the projection of p onto G

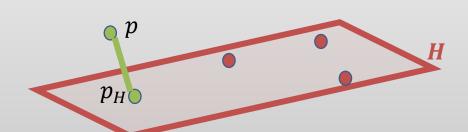


Lemma 1: $d(p, p_H) \le kx$

Lemma 2: $d(p_H, G) \le kx$

Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

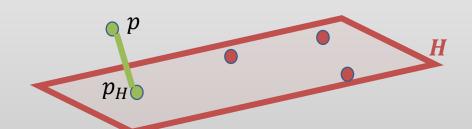


Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

Proof.

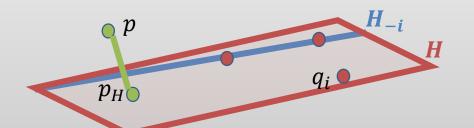
• Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$



Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

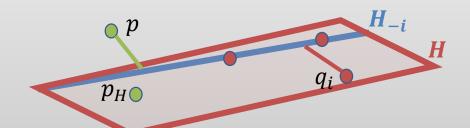
- Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$
- Let $H_{-i}\coloneqq H_{S\setminus\{q_i\}}$



Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

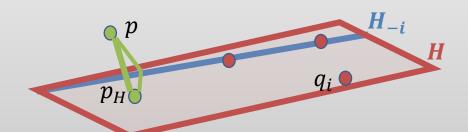
- Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$
- Let $H_{-i} \coloneqq H_{S \setminus \{q_i\}}$
- Since we did not choose p in LS, $dist(p, H_{-i}) \leq dist(q_i, H_{-i})$



Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

- Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$
- ullet Let $H_{-i}\coloneqq H_{S\setminus\{q_i\}}$
- Since we did not choose p in LS, $dist(p, H_{-i}) \leq dist(q_i, H_{-i})$
- Since p_H is a projection of p onto H, $dist(p_H, H_{-i}) \le dist(p, H_{-i})$



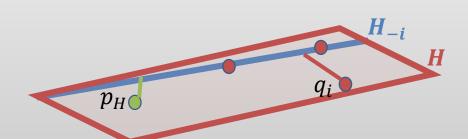
Lemma 2: $d(p_H, G) \le kx$

Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

Proof.

- Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$
- Let $H_{-i}\coloneqq H_{S\setminus\{q_i\}}$
- Since we did not choose p in LS, $dist(p, H_{-i}) \leq dist(q_i, H_{-i})$
- Since p_H is a projection of p onto H, $dist(p_H, H_{-i}) \le dist(p, H_{-i})$
- Thus $dist(p_H, H_{-i}) \leq dist(q_i, H_{-i})$



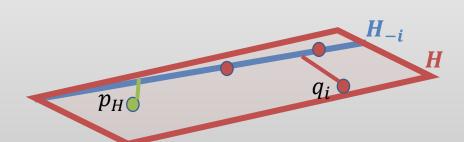
Lemma 2: $d(p_H, G) \le kx$

Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

Proof.

- Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$
- Let $H_{-i}\coloneqq H_{S\setminus\{q_i\}}$
- Since we did not choose p in LS, $dist(p, H_{-i}) \leq dist(q_i, H_{-i})$
- Since p_H is a projection of p onto H, $dist(p_H, H_{-i}) \le dist(p, H_{-i})$
- Thus $dist(p_H, H_{-i}) \leq dist(q_i, H_{-i})$
- Thus $|\alpha_i| \leq 1$



We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \le 1$

Assumption: $dist(q_i, G) \le x$

We can write
$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. all $|\alpha_i| \le 1$

Assumption: $dist(q_i, G) \le x$

Lemma2: $dist(p_H, G) \leq \sum_{i=1}^k \alpha_i dist(q_i, G) \leq k \cdot x \leq kx$

We can write
$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. all $|\alpha_i| \le 1$

Assumption: $dist(q_i, G) \le x$

Lemma2: $dist(p_H, G) \leq \sum_{i=1}^k \alpha_i dist(q_i, G) \leq k \cdot x \leq kx$

Lemma 1: $d(p, p_H) \le kx$

We can write
$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. all $|\alpha_i| \le 1$

Assumption: $dist(q_i, G) \le x$



Lemma2: $dist(p_H, G) \leq \sum_{i=1}^k \alpha_i dist(q_i, G) \leq k \cdot x \leq kx$

Lemma 1: $d(p, p_H) \le kx$

Goal: $d(p,G) \le 2kx$

We can write
$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. all $|\alpha_i| \le 1$

Assumption:
$$dist(q_i, G) \le x$$

Lemma2: $dist(p_H, G) \leq \sum_{i=1}^k \alpha_i dist(q_i, G) \leq k \cdot x \leq kx$

Lemma 1: $d(p, p_H) \le kx$

Goal: $d(p,G) \leq 2kx$

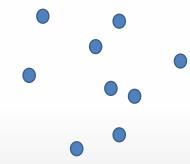
Main Lemma [formal]:

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Local Search produces a core-set for volume maximization

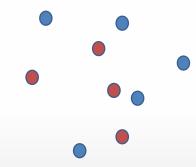
Let $V = \bigcup_i V_i$ be the union of the point sets



Local Search produces a core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

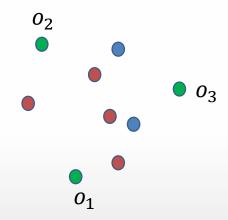


Local Search produces a core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume



Local Search produces a core-set for volume maximization

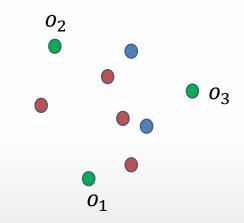
Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

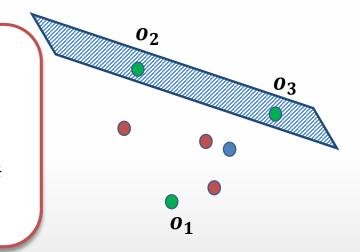
Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

 $Sol \leftarrow Opt$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

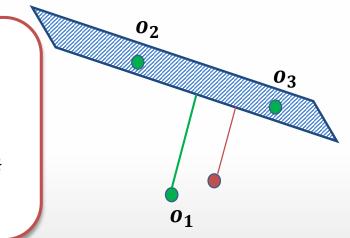
Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

 $Sol \leftarrow Opt$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

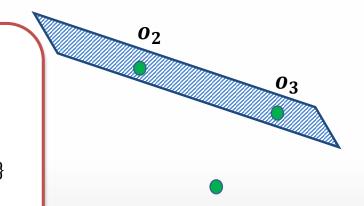
Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

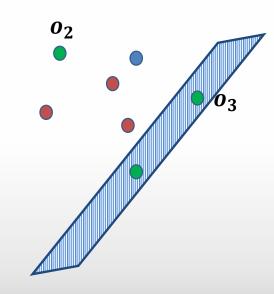
Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

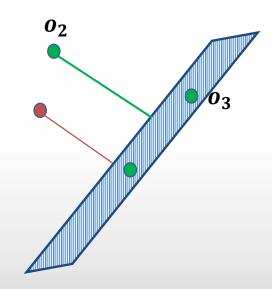
Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For
$$i = 1 \text{ to } k$$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

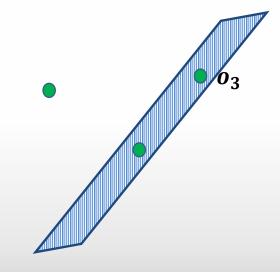
Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

 $Sol \leftarrow Opt$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

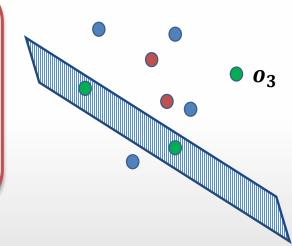
Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For
$$i = 1$$
 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

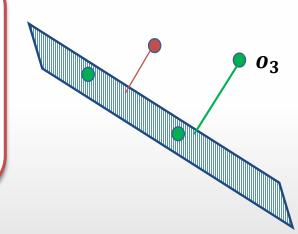
Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

 $Sol \leftarrow Opt$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

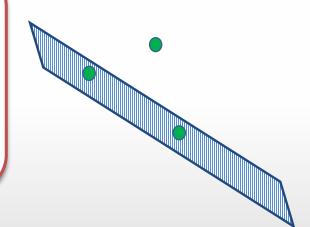
Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

 $Sol \leftarrow Opt$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

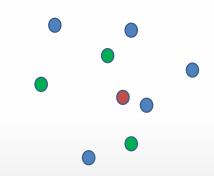
Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For
$$i = 1$$
 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

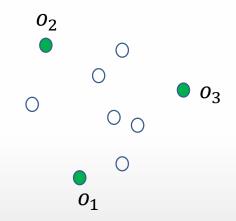
Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

 $Sol \leftarrow Opt$ For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

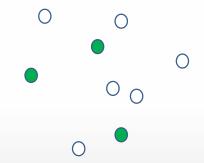
Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For
$$i = 1$$
 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



Local Search produces a core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For
$$i = 1$$
 to k

- Let $q_i \in S$ be the point that is fa
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Since local search preserve maximum distances to subspaces

 \triangleright Lose a factor of at most 2k at each iteration

Local Search produces a core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

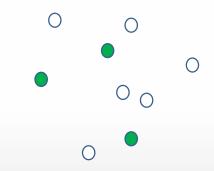
Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

$$Sol \leftarrow Opt$$

 $For i = 1 to k$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$



- \triangleright Lose a factor of at most 2k at each iteration
- \triangleright Total approximation factor $(2k)^k$

Empirical Results

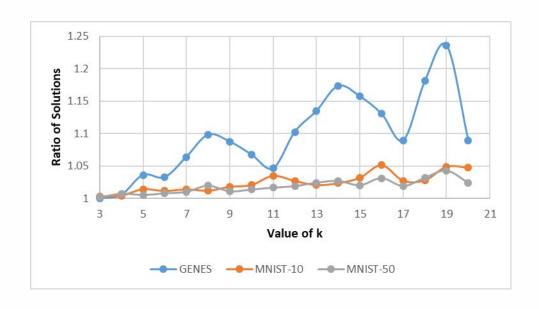
Data Set

- MNIST, with number of parts = 10
- MNIST, with number of parts = 50
- GENES, with number of parts = 10

Process

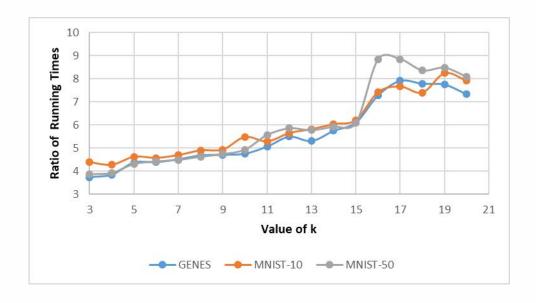
- Partition the data set randomly into parts
- Compute a core-set using one of the algorithms: **Greedy, Local Search, LP-Based algorithm of [IMOR'18]**
- Use greedy on the union of the coresets

Local Search vs Greedy



Improvement of the solution of Local Search over Greedy

- On average, 1.2%, 2.5%, and 9.6% improvement
- > Some cases up to 58% improvement



Ratio of runtime of Local Search over Greedy

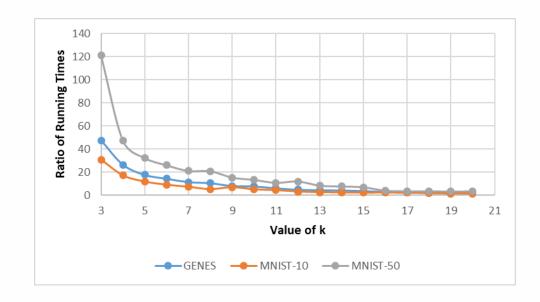
On average, 6 times slower

Local Search vs. LP-based Algorithm of [IMOR'18]



Improvement of the solution of Local Search over [IMOR'18]

- On average, 1.4%, 1.8%, and 7.3% improvement
- > Some cases up to 63% improvement



Ratio of runtime of Local Search over [IMOR'18]

For lower values of k, Local Search is up to 50 times faster.

Summary

- Volume/Determinant Maximization Problem
- Notion of composable core-sets
- Algorithms that find composable core-sets for volume/determinant maximization

	[IMOR'18]	Greedy	Local Search
Approximation	$O(k\log k)^{k/2}$	$O(C^{k^2})$	$O(k^k)$
Core-set Size	$O(k \log k)$	k	k
Simple?	×	✓	✓
Empirical Approximation			Performs Best
Empirical Runtime	Slowest	Fastest	4 times slower than Greedy.

Summary

- Volume/Determinant Maximization Problem
- Notion of composable core-sets
- Algorithms that find composable core-sets for volume/determinant maximization

	[IMOR'18]	Greedy	Local Search
Approximation	$O(k\log k)^{k/2}$	$O(C^{k^2})$	$O(k^k)$
Core-set Size	$O(k \log k)$	k	k
Simple?	×	✓	✓
Empirical Approximation			Performs Best
Empirical Runtime	Slowest	Fastest	4 times slower than Greedy.

Conclusion

• Local Search might be the right algorithm to use in massive data models of computation.

Summary

- Volume/Determinant Maximization Problem
- Notion of composable core-sets
- Algorithms that find composable core-sets for volume/determinant maximization

	[IMOR'18]	Greedy	Local Search
Approximation	$O(k\log k)^{k/2}$	$O(C^{k^2})$	$O(k^k)$
Core-set Size	$O(k \log k)$	k	k
Simple?	×	✓	✓
Empirical Approximation			Performs Best
Empirical Runtime	Slowest	Fastest	4 times slower than Greedy.

Conclusion

• Local Search might be the right algorithm to use in massive data models of computation.

Open Problem

• Tight analysis of Greedy: does it also provide approximation $k^{O(k)}$?

THANK YOU!

Summary

- Volume/Determinant Maximization Problem
- Notion of composable core-sets
- Algorithms that find composable core-sets for volume/determinant maximization

	[IMOR'18]	Greedy	Local Search
Approximation	$O(k\log k)^{k/2}$	$O(C^{k^2})$	$O(k^k)$
Core-set Size	$O(k \log k)$	k	k
Simple?	×	✓	✓
Empirical Approximation			Performs Best
Empirical Runtime	Slowest	Fastest	4 times slower than Greedy.

Conclusion

• Local Search might be the right algorithm to use in massive data models of computation.

Open Problem

• Tight analysis of Greedy: does it also provide approximation $k^{O(k)}$?